Discrete Signal Reconstruction by Sum of Absolute Values

IEEE Signal Processing Letters, Vol. 22, No. 10, 2015

Masaaki Nagahara

The University of Kitakyushu

Discrete Signal Reconstruction

Alphabet set: $X = \{r_1, r_2, ..., r_L\}$

Probability: $P(r_k) = p_k$, k = 1, 2, ..., L

Reconstruction problem: Given linear

measurements

$$y=\Phi x\in\mathbb{C}^m$$

of the original signal $x \in X^n$ where n > m, find the original x.

The idea

If $x \in X^n$, then $x - r_k$ is sparse.

Sum-of-Absolute-Values Optimization (SOAV)

$$\min_{z \in \mathbb{R}^n} \sum_{k=1}^L p_k ||z - r_k||_1 \text{ s.t. } y = \Phi z$$

$$\min_{z \in \mathbb{R}^n} \sum_{k=1}^L p_k ||z - r_k||_1 \text{ s.t. } ||y - \Phi z||_2 \le \epsilon$$

$$\min_{z \in \mathbb{R}^n} \sum_{k=1}^{L} p_k ||z - r_k||_1 + \lambda ||y - \Phi z||_2^2$$

Dynamical Systems

Differential equation

$$\frac{dx(t)}{dt} = Ax(t) + Bz(t), \quad t \ge 0$$
 (*)

Boundary Conditions: $x(0) = x_0$, x(T) = 0

Constraint: $|z(t)| \le 1$, $\forall t \in [0, T]$

Discreteness: $z(t) \in \{r_1, r_2, ..., r_L\}$ a.e. t > 0

Problem

Find a function z(t) on [0,T] that satisfies the boundary conditions, constraints, and discreteness under the dynamics of (*).

(Theorem) Minimizing

$$J = \sum_{k=1}^{L} \int_{0}^{T} |z(t) - r_{k}| dt$$

gives a solution (under mild assumptions).

After time discretization, the (infinite-dimensional) optimization is reduced to SOAV.

Binary image reconstruction

Example

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} z(t)$$



